
Performance Evaluation of Multi-Path TCP
for Data Center and Cloud Workloads

Lucas Chaufournier
UMass Amherst

lucasch@cs.umass.edu

Ahmed Ali-Eldin
UMass Amherst

ahmeda@cs.umass.edu

Prateek Sharma
Indiana University
prateeks@iu.edu

Prashant Shenoy
UMass Amherst

shenoy@cs.umass.edu

Don Towsley
UMass Amherst

towsley@cs.umass.edu

ABSTRACT
Today’s cloud data centers host a wide range of applications in-
cluding data analytics, batch processing, and interactive processing.
These applications require high throughput, low latency, and high
reliability from the network. Satisfying these requirements in the
face of dynamically varying network conditions remains a challeng-
ing problem. Multi-Path TCP (MPTCP) is a recently proposed IETF
extension to TCP that divides a conventional TCP flow into multiple
subflows so as to utilize multiple paths over the network. Despite
the theoretical and practical benefits of MPTCP, its effectiveness for
cloud applications and environments remains unclear as there has
been little work to quantify the benefits of MPTCP for real cloud
applications. We present a broad empirical study of the effectiveness
and feasibility of MPTCP for data center and cloud applications,
under different network conditions. Our results show that while
MPTCP provides useful bandwidth aggregation, congestion avoid-
ance, and improved resiliency for some cloud applications, these
benefits do not apply uniformly across applications, especially in
cloud settings.

ACM Reference Format:
Lucas Chaufournier, Ahmed Ali-Eldin, Prateek Sharma, Prashant Shenoy,
and Don Towsley. 2019. Performance Evaluation of Multi-Path TCP for Data
Center and Cloud Workloads. In Tenth ACM/SPEC International Conference
on Performance Engineering (ICPE ’19), April 7–11, 2019, Mumbai, India.
ACM, New York, NY, USA, 12 pages. https://doi.org/10.1145/3297663.
3310295

1 INTRODUCTION
Data centers host a wide range of complex applications with variable
and evolving requirements. Most of these applications are distributed
in nature with their components communicating over the data center
network. Consequently, data center networks must support a diverse
array of requirements and workloads ranging from latency-sensitive
applications such as web servers to throughput-intensive ones such
as distributed data processing and virtual machine live-migration.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ICPE ’19, April 7–11, 2019, Mumbai, India
© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6239-9/19/04. . . $15.00
https://doi.org/10.1145/3297663.3310295

The diverse mix of applications, workload burstiness, and dy-
namic placement of application components on data center servers
results in highly dynamic and bursty network traffic [6]. This high
variability in network traffic can cause congestion on certain parts
of the data center network, and can cause network imbalance. This
imbalance and congestion adversely affects both throughput and
latency, and can severely hurt application performance. In some
latency-sensitive applications such as web-search, it even affects
correctness and monetary revenue [3].

Given the undesirable nature of network imbalance, network load
balancing has received significant attention from both industry and
academia [2, 3]. Traditionally, one of two approaches have been
used to address network load dynamics within data center networks.
The first approach uses network topologies such as fat-trees [1, 18]
to provide multiple paths between servers and network switches,
thereby providing high aggregate network bandwidth. The second
approach detects overloaded network elements and makes appropri-
ate packet switching and forwarding decisions to alleviate network
hot-spots. This approach pushes network management down into the
network switches, and is implemented by switch-based techniques
such as ECMP and Software Defined Networks (SDNs) [27].

A less explored alternative for handling network dynamics is
the use of multi-path networking where packets to and from an ap-
plication traverse multiple network paths concurrently. Multi-path
networking has many potential benefits. In addition to increased
reliability, multi-pathing enables network resources from multiple
paths to be aggregated—potentially providing increased bandwidth.
Multi-path networking can also mitigate congestion within the data
center network or handle network failures by exploiting redundant
paths [43]. Multi-path networking is feasible in today’s data centers
since (i) common data center network topologies such as fat-trees
and clos provide multiple paths to each server, and (ii) servers them-
selves have multiple network interfaces (NICs), enabling them to
exploit redundant paths to other servers.

Multi-path TCP (MPTCP) is an end-to-end protocol, proposed
as an IETF extension to TCP, to provide multi-path networking ca-
pabilities without the need for complex in-network hardware [16].
MPTCP divides a conventional TCP flow into multiple sub-flows that
traverse multiple paths between servers utilizing the available NICs
on a server [37]. It is a drop-in replacement for TCP that theoreti-
cally can enhance data center application performance by providing
network bandwidth aggregation across multiple paths, increased
reliability and resiliency against network failures, and better perfor-
mance with congestion [37]. In the context of data center networks,

https://doi.org/10.1145/3297663.3310295
https://doi.org/10.1145/3297663.3310295
https://doi.org/10.1145/3297663.3310295

MPTCP performance has been evaluated using simulations and sim-
ple network measurement applications like iperf [34], but not using
real-world data center and cloud workloads. Similarly, MPTCP’s
reliability benefits have been studied for mobile environments such
as cellphones with multiple interfaces (cellular and WiFi) [11], a
different environment from data center networks. We build on this
prior work and address the following question in this paper: How do
modern data center and cloud applications perform under MPTCP
in real-world settings from the perspective of bandwidth aggregation,
multi-tenancy, network congestion and reliability? To address this
broad question, we experimentally study MPTCP performance to
answer the following research questions.

(1) How much benefit does MPTCP’s promise of aggregated
bandwidth provide to applications in uncongested networks?
How do these benefits change for multi-tenant applications
with competing network traffic?

(2) What is the application performance under congested network
settings using MPTCP? Does MPTCP provide reliability ben-
efits when compared to TCP for handling network failures?

(3) For each of the above questions, what type of application
workloads see the greatest benefits from MPTCP? Are there
workloads or scenarios where MPTCP is detrimental to per-
formance when compared to TCP?

(4) How well do these benefits, measured in a private cloud envi-
ronment, carry over to a public cloud infrastructure?

In answering these questions, our paper makes the following
research contributions:
1. We conduct an empirical performance study evaluating the perfor-
mance of MPTCP beyond simple benchmark applications used in
prior work. Our study considers a wide range of representative data
center workloads under different scenarios including non-congested
networks, multi-tenancy, congestion, and in public clouds.
2. In uncongested single-tenant scenarios, we find MPTCP to be
ineffective over TCP since other resources become a bottleneck well
before the network saturates. In uncongested multi-tenant scenarios,
MPTCP provides benefits for select workload classes but not for
others. Specifically, memory-transfer intensive workloads such as
VM migration can see up to 2X higher throughput, while bulk disk
transfers workloads see benefits whenever SSD read speeds exceed
allocated network rates. No benefits are seen for Spark workloads
on slower HDDs or for request-response workloads.
3. In the presence of network congestion, MPTCP offers benefits for
a broad set of applications, with the up to 20 to 50% better perfor-
mance over TCP in the presence of congestion—due to its ability to
exploit multiple paths. In the presence of network failures, MPTCP’s
robustness properties allow us to exploit additional network paths
upon a failure on the first path, providing significant robustness
advantages over TCP.
4. While the above benefits apply to private cloud data centers, we
find that today’s public cloud platforms employ network topologies
and policies such as throttling that may prevent applications from
fully exploiting MPTCP’s capabilities.

2 BACKGROUND
Over the past decade, data center applications have evolved consid-
erably from legacy applications to today’s cloud-native applications.

MPTCP Socket
(10.0.1.1, 4545, 10.0.1.2, 2323)

Application

Primary Subflow (TCP)
(10.0.1.1, 4545, 10.0.1.2, 2323)

Secondary Subflow (TCP)
(10.0.2.1, 8787, 10.0.2.2, 6754)

NIC 1 NIC 2

Kernel

TCP Socket API

Figure 1: MPTCP creates multiple TCP subflows for a single
TCP connection.

Cloud workloads today range from micro-services with microsec-
ond latency requirements to batch applications and distributed data
processing jobs running for hours or even days [38]. In parallel to
the application evolution, data center networks have seen a parallel
evolution to provide high network performance for these applica-
tions.

Moreover, application dependence on network performance can
vary considerably, since applications may be bottlenecked by other
resources such as CPU and I/O. For example, the importance of
high-speed networks for distributed data processing workloads such
as Hadoop and Spark has recently been questioned [30, 41]. While
prior work on MPTCP has focused on network performance, it is
also important to understand the benefits of MPTCP for end-to-end
application performance.
Multi-Path TCP. MPTCP is a set of proposed protocol extensions
to conventional TCP, that enables TCP to effectively use multiple
paths by dividing a TCP flow into multiple sub-flows. Subflows take
advantage of the multiple NIC’s available on each server to traverse
multiple available paths between servers [37]. Since today’s data
center network architectures (like clos and fat-trees) already provide
some form of link redundancy, MPTCP can be used in data centers to
provide bandwidth aggregation, resiliency, and higher performance
when some network paths are congested.

MPTCP is carefully designed to be robust against middle-boxes
such as NATs. Applications and users create MPTCP connections us-
ing the existing BSD socket API (connect, bind, listen, read,
write, etc.). MPTCP is implemented as a layer on top of the TCP
stack in the kernel. With an MPTCP enabled kernel, applications
need no modifications, as the MPTCP layer in the kernel treats TCP
sockets as MPTCP sockets. MPTCP has many desirable properties
that may provide many benefits in data centers. These include the
following:
Bandwidth aggregation via Resource Pooling: One of MPTCP’s
design principles is to provide resource pooling at the network layer.
Essentially, MPTCP exposes multiple network paths as a single

abstract connection. Each subflow sends data on one network path,
and the network resources on these paths are aggregated and pooled.
As an example, when two servers are each connected using two 10
Gbps interfaces, an MPTCP connection enables throughput of up to
20 Gbps, the aggregate of the two connections.
Improved Resiliency: Using multiple paths presents an obvious
reliability advantage. If one path is inaccessible, then the MPTCP
connection can continue data transfer on the remaining subflows, re-
sulting in improved resiliency against network faults to applications.
Operational Readiness: MPTCP operates at the end-host level, and
does not require support from the underlying network, in contrast
to other approaches for data center networking that rely on switch-
level management [2, 47]. MPTCP is both network and application
transparent since it presents a standard TCP socket abstraction to
applications. Further, MPTCP support is available both in server
operating systems such as Linux, and in mobile OSes such as iOS.
Hence, users of data centers and clouds can use MPTCP without any
network or application modification, and avail these features.
MPTCP implementation. The implementation of MPTCP in Linux
and other OSes can be understood from the perspective of data and
control planes, and congestion control.
Control plane: MPTCP uses TCP connections to send data on mul-
tiple paths. It retains and extends TCP’s four-tuple (source-ip,
source-port, destination-ip, destination-port) model of
connection establishment. To the application, it presents the abstrac-
tion of a TCP connection. Underneath, it sets up multiple subflows
for a single connection (see Figure 1). Each subflow represents a dis-
tinct four-tuple, and data is sent on each subflow using TCP. As part
of MPTCP’s connection establishment, it advertises and negotiates
the subflows based on the IP addresses available on each host.

Each subflow represents a separate path between the source and
the destination. For example, if each host has two network interfaces
(and hence two IP addresses), MPTCP establishes up to four sub-
flows. MPTCP creates a primary subflow that corresponds to the
TCP connection four-tuple requested by the application. The primary
subflow is established first, followed by the secondary subflows on
the other paths. Subflows are said to have been established once
their TCP connection is also established and ready to send/receive
data. If a path becomes (in)accessible, its corresponding subflow is
removed/added by MPTCP. Note that the number of network links
shared by the paths (and hence subflows) depends on the network
topology. Subflows can also use disjoint network paths offered by
common data center network topologies such as fat-trees.
Data plane: Since MPTCP uses TCP for the underlying subflows, its
data transfer mechanisms are based on TCP sequence numbers,
windows, etc. The existence of multiple paths requires that the
MPTCP layer must tackle the problem of scheduling packets on
to subflows, and reassembling packets from different subflows at
the receiver [5, 32]. MPTCP supports multiple scheduling policies
including, for example, round-robin. The default, more sophisticated
scheduling policy considers the available window sizes and round
trip times (RTTs) of the subflows. Each subflow maintains its own
TCP sequence numbers, and the data from multiple subflows is re-
assembled by MPTCP to provide the application with an ordered
bytestream.
Congestion control: MPTCP implements its own congestion control
that works across all subflows [35]. One of its design goals is to

VM vCPU Mem (GiB) SSD (GiB) NICs Bandwidth
D4 v2 8 28 400 8 6000 (Mbps)

D13 v2 8 56 400 8 6000 (Mbps)
Table 1: Azure VMs used in our public cloud experiments.

be fair to existing TCP connections not causing other connections
to starve. Accordingly, its congestion control scheme uses a single
congestion window shared by all subflows, and changes the global
congestion window based on congestion on each subflow. In addition
to this coupled policy, other congestion control policies have been
proposed in the literature [22, 28, 44], including uncoupled policies,
which treat each subflow independently and is not fair to other TCP
traffic [13].

3 EXPERIMENTAL METHODOLOGY
In this section, we describe our experimental methodology, including
our system setup, network setup and applications workloads used in
our empirical study.

3.1 System setup
Our experiments assume two distinct environments, a cluster en-
vironment in a private cloud and a production public cloud. We
conduct our initial set of experiments in the private cluster envi-
ronment, which enables controlled experimentation with varying
network loads. We also conduct additional experiments in a public
cloud to see how well these results apply to those settings.
Cluster Environment for Private Cloud. Our private cloud cluster
consists of eight Dell PowerEdge R430 servers with two 2.10 GHz
Intel E5-2620 v4 CPUs, 64GB of RAM, 1 TB SATA HDD, and
a Samsung Evo 850 250 GB SSD. The servers are equipped with
both 10 GigE and 1 GigE cards, Intel X710 and Broadcom NetX-
treme BCM5720 NICs, respectively. We configure our servers to run
Ubuntu 16.04 with Linux kernel v4.10. The cluster network is con-
figured as a simplified two-level fat-tree topology [1, 12] as shown
in Fig 2. Nodes are divided between two pods/racks. The servers
are interconnected by 10 GigE Netgear M4300-12x12F switches.
We use two 10Gb ethernet links for each server unless explicitly
specified—i.e., applications using MPTCP have an available aggre-
gate bandwidth of 20Gbps.
Public Cloud Setup. Our public cloud experiments are run on the
Azure public cloud. The experiments are performed on the Azure
East-US region using two different VM types, namely, Standard
D4 V2 and Standard D13 V2 VM types. Table 1 summarizes each
VM type and their available resources. Both VM types are identical
except for their memory sizes. We configure each VM with two
network interfaces, with each interface assigned an IP address on a
different subnet.
MPTCP Setup. Our machines run Linux with kernel version 4.10
that is configured to run MPTCP v0.93 1—the latest version as
of Jan. 1, 2018 [31]. While we have experimented with different
MPTCP kernel configurations and congestion control algorithms,
unless otherwise specified, our results assume the default kernel

1We performed the same experiments with the three previous versions of MPTCP, but
do not report there results due to space constraints.

1 2 3 4

TOR 1 TOR 2

5 6 7 8

TOR 3 TOR 4

Core 1 Core 2

POD 1 POD 2

Figure 2: Two-level fat-tree network used in our private cluster
experiments.

options and the LIA congestion control, which is the recommended
congestion control algorithm for MPTCP. To reduce unnecessary
CPU overhead, we turn off MPTCP header checksumming while
leaving the conventional TCP checksums enabled even when using
MPTCP. In most experiments, receive buffers are set according to
RFC6182 [15] which specifies the multiplication of the maximum
round-trip time across all paths by the total bandwidth available as
the suggested size of the buffers. This results in receive buffers being
much larger (256MB) than the default (8KB).

3.2 Application Workloads
Our experiments assume two broad classes of cloud workloads,
namely memory-intensive and disk-intensive, both of which generate
network traffic of varying characteristics (e.g., packet sizes, network
bandwidth use). For memory-intensive workloads, our experiments
use the following:

• Bulk memory data transfer microbenchmarks using iperf
• Live virtual machine migration which involves network-intensive

memory to memory data transfers
• Redis, an in-memory key-value store, with the Yahoo Cloud

serving Benchmark (YCSB) to generate requests

For disk-intensive workloads, our experiments use the following:

• Bulk disk data transfer microbenchmarks using rsync and
FTP

• Distributed data processing using Spark

The specific setup of each of these workload is described along with
the experiments in sections 4 and 5.

3.3 Network Conditions
For both memory and disk bound workloads, we first run experi-
ments in an uncongested network where the full 10 GigE interface
bandwidth is available to the application and there is no background
traffic on the switches. We then repeat the experiment in a multi-
tenant environment by assuming that the server hosts multiple appli-
cations and rate limit an application’s network bandwidth allocation
to smaller values (e.g., 1 Gb/s, 2Gb/s and so on); such rate limits are
common in public cloud environments (as we later discuss in Sec-
tion 6). Next, we introduce congestion in the network and measure

Co
ng
es
tio

n	
(K
B/
s)

Figure 3: Alternating congestion on the two interfaces.

the application performance in the presence of congestion. Finally,
we introduce link failures of certain links on switches and measure
application performance in the presence of failures. By gradually
progressing from no congestion to network failures, we are able
to systematically evaluate MPTCP under a broad set of network
conditions.

Since MPTCP’s use of multiple paths can provide congestion and
failure resilient capabilities without the need for custom network
modifications, we run experiments congesting the network paths
to study how MPTCP is robust under congestion conditions. To
study the performance of MPTCP versus TCP under a realistic
congestion profile, we built a network congestion generator that
randomly congests a network interface. We introduce congestion for
a variable amount of time and bandwidth over all available paths,
from two neighboring servers, to mimic background traffic seen in
data center networks. The congestion per interface is independent of
the presence of congestion on the other interfaces, i.e., for MPTCP,
the two interfaces can become congested during the same time period.
An example congestion profile on two network interfaces is shown
in Figure 3, which shows a snapshot of the traffic generated on the
interfaces per second for a period of 15 minutes. The congestion
generator is used in all our congestion experiments.

4 PERFORMANCE OF MEMORY-INTENSIVE
WORKLOADS

We first begin our experimental study by considering memory-
intensive workloads that perform memory-to-memory network I/O
with different characteristics. Our premise is that memory-to-memory
data transfers represent the “best case” for exploiting the available
network bandwidth under MPTCP (e.g., for exploiting the available
aggregate bandwidth on both paths) since memory is often not a
bottleneck for such workloads, leaving them flexibility to fully uti-
lize the available network bandwidth. Consequently we begin our
experiments with applications such as memory data transfers, live
VM migration, and in-memory key-value stores that represent this
class of workloads. We begin with a description of the setup for each
workload and then describe our results.

Memory data transfer microbenchmark. iperf is a memory-to-
memory data transfer microbenchmark used to stress test networks
and measure available bandwidth. Thus it is inhrently capable of
using all available bandwidth between a pair of servers (and that on

multiple paths for MPTCP). We configure iperf to perform bulk data
transfers of various sizes ranging from as small as 1KB to as large
as 10 GB. This microbenchmark has also been used in prior work
on MPTCP performance [5, 34, 48] and provides a baseline result
for our more complex workloads.

Live Virtual Machine Migration. Cloud data centers are virtu-
alized and host applications inside virtual machines. The VMs are
often migrated from one physical server to another for re-balancing
load and alleviating hot-spots [46]. Live VM migration is therefore
a common internal data center workload that involves iterative mem-
ory transfer of VM state from one machine to another via a process
called pre-copying, i.e., dirty pages, at the source server are recopied
to the destination continuously until the rate of re-copied pages is
greater than the page dirtying rate. As memory bandwidth is sev-
eral times larger than network bandwidth, live migration is usually
network bound. In our experiments, we use KVM to migrate VMs
with different memory sizes (ranging from 16GB to 64GB memory
sizes) from one machine to another. The VMs run a kernel compile
task during the migration, which causes significant dirtying of pages
and stresses the migration process. The VM disk state is assumed
to be stored on network storage and is not transferred (a common
assumption in data centers).
Latency-sensitive In-Memory Key-value stores. In-memory key-
value stores, such as memcached and Redis, are key components of
many cloud applications, since providing low latencies is an impor-
tant performance requirement for these workloads. We use Redis, a
widely used in-memory key-value store as a representative example
of such a workload and use the Yahoo Cloud Serving Benchmark
(YCSB) v0.12 [9] to generate read and write requests to this Redis
server. We use one of YCSB’s core workloads, workloada 2, that
has a mix of 50:50 reads and writes to generate the client work-
load. We also use a second read-intensive workload with a 99:1
reads/write ratio. Both workloads are configured to request objects
of two different sizes 1KB and 100KB from the in-memory Redis
store.

4.1 Performance in Uncongested Networks
We first present experimental results for a single-tenant uncongested
network where there is no background traffic from other applications,
and thus no network interference.
Memory Bulk Transfer Microbenchmarks. We configure iperf
to perform in-memory network transfers of various sizes ranging
from kilobytes to megabytes to ten gigabytes. We determine the total
latency to perform these data transfers under MPTCP and compare
it to vanilla TCP. Figure 4 depicts the latency of these in-memory
transfers for both MPTCP and TCP, and reports the mean value for
each data point over 15 runs. The figure shows that both MPTCP
and TCP exhibit very similar latencies for up to 100 MB of network
transfers. However, MPTCP begins to outperform TCP beyond this
point and shows 2X lower latencies for transfer sizes between 1GB
to 10GB (and beyond). This result is in line with our expectation
(and prior work [34]). Since the servers are equipped with 10 GigE
network interface cards, flows up to 100MB take anywhere from tens
of micro-seconds to tens of milliseconds to complete (depending of
transfer size). This is too short of a duration for MPTCP to begin

2See https://github.com/brianfrankcooper/YCSB/wiki/Core-Workloads

Tr
an
sfe

r	T
im

e	
(s
ec
)

Figure 4: Latencies for memory-to-memory bulk data transfers.
MPTCP shows up to 2X benefits due to its bandwidth aggrega-
tion but only for transfer sizes exceeding 100MB.

Figure 5: MPTCP’s subflow does not start sending packets un-
til 500Kb are sent on the main flow.

exploiting its second path, causing MPTCP behavior to resemble
TCP behavior on a single path. For large data transfers of 1GB or
greater, which are longer lived flows, MPTCP can begin to exploit
both network paths allowing it to exhibit network aggregation ben-
efits. We note that even a 10GB transfer takes only about a second
for TCP and half a second for MPTCP on 10 GigE interfaces. As
has been observed in prior work, flows need to be “long” and suf-
ficiently network-intensive for MPTCP to exploit its aggregation
capability, and these microbenchmarks confirm those insights for
10 GigE environments. These overheads are due to MPTCP’s more
complex sequence of events during connection establishment, and
due to MPTCP’s scheduler, which chooses a subflow for outgoing
packets.

To validate the above insights, we captured a packet trace of iperf
sending ten gigabytes of data and plotted the fraction of traffic sent
over each subflow. Figure 5 shows the amount of traffic sent over
each of MPTCP’s subflows for the first several KBs. We see that
the master subflow is used to send all traffic until 500KB of data is
sent, at which point the second subflow is established and begins
transferring data. The figure shows that while the second subflow
starts when around 500KB of data has been transmitted, it is not until
at least 1000KB of data is sent that the second subflow is effective.

)
V
M
	T
ra
n
sf
e
r	
T
im

e
	(
se
c)

Figure 6: Live VM migration times for different VM memory
sizes. Surprisingly, MPTCP does not show any improvement
over TCP in uncongested networks.

Thus for workloads where the total amount of data sent is less than
1MB, MPTCP may be ineffective for bandwidth aggregation due to
the delay in setting up and using the second path. Further, our results
indicate that the flow has to be sufficiently long (>100MB in our
experiments) to see meaningful bandwidth aggregation benefits in
high-speed LAN settings.

VM Live Migration. VM live migration involves copying the
memory state of the VM from one server to another using an iterative
copying mechanism. It is therefore a pure memory-to-memory bulk
transfer workload, and one would expect that, in theory, it should
provide benefits similar to the iperf microbenchmark for large VM
memory sizes. We performed a range of live VM migrations for
VM memory sizes ranging from 16GB to 64GB. The migrated VMs
execute a kernel compilation task, which changes and dirties a sig-
nificant number of pages. Figure 6 shows the mean and the 95%
confidence intervals of the migration times under MPTCP and TCP
over 15 runs for each memory size. Surprisingly, we find that despite
involving data transfers of tens of gigabytes (a scenario where iperf
shows clear benefits for MPTCP), the mean migration times for
MPTCP is similar to TCP and both have overlapping confidence
intervals, showing no statistical advantage for MPTCP. We attribute
this behavior to several factors. Specifically the VM migration pro-
cess in QEMU is performed by a single thread, which also performs
operations such as checksumming. Our results show that for an un-
congested 10 GigE network, we are unable to perform these CPU
operations at line speeds. Consequently the VM migration process
is unable to fully utilize the bandwidth of 10 GigE links, much less
the aggregated 20 Gb/s bandwidth available to MPTCP. Due to these
software bottlenecks, both TCP and MPTCP are able to use only
a portion of the available network bandwidth and exhibit similar
migration latencies.
In-memory Key-Value Stores. Our final real-world cloud applica-
tion is Redis, an in-memory data-store, which has strict average
and tail latency requirements. We use YCSB to generate the client
workload for Redis using different ratios of read and write requests

Protocol TCP MPTCP
Buffer 256MB 256MB
Workload 1KB 100KB 1KB 100KB
Non-Congested Latency 253 3094 305 3611
Non-Congested
Throughput

123652 10060 102711 8546

Congested Latency 369 ∞ 369 3635
Congested Throughput 93181 0 76974 7868

Table 2: MPTCP performance for Redis workloads. MPTCP
shows higher latency in uncongested networks but performs bet-
ter under congestion.

and different object sizes as discussed earlier. Since the in-memory
network transfer sizes are in the range of kilobytes for this work-
load [39], in theory, we should expect behavior similar to the small
data transfer sizes for our initial iperf experiment. Since MPTCP’s
performance is known to depend on the send and receive buffer
sizes [8, 14], we ran our experiments using the default socket buffer
size of 4MB in Linux and a large buffer size of 256MB that is more
appropriate for high speed interfaces; both buffer sizes are adequate
for the request sizes in this workload and showed similar results;
consequently we only report results for the 256MB socket buffer
size below.

Table 2 depicts the mean read latencies and mean throughput for
YCSB under MPTCP and TCP for the two object sizes. We see that
both MPTCP and TCP exhibit similar latency and throughput with
MPTCP under-performing TCP by around 10-20%. We attribute this
slight degradation in performance to the more complex connection
setup overhead of MPTCP when compared to TCP. This result also
reveals an important insight—since the majority of network flows in
data centers are smaller than 1MB in size [39], it is not advisable to
make MPTCP the default protocol for all applications (since it will
slightly worsen performance for many applications). Instead it is
better to selectively use MPTCP only for applications characterized
by long-lived flows that transfer significant amounts of data. Of
course, if resiliency and congestion-avoidance are desired, than
MPTCP is still suitable.

4.2 Multi-tenancy Performance
Our previous experiments assumed a single-tenant uncongested net-
work with no competing applications and full NIC bandwidth avail-
able to the running application. In practice, each data center or cloud
server is virtualized hosting multiple VMs (tenants). The network
interface bandwidth will be partitioned across the co-located tenants,
with a certain fraction of the bandwidth of each NIC dedicated to a
tenant. Consequently, in practice, only a fraction of each 10 GigE
NIC’s bandwidth may be available to a tenant, while the rest of the
NIC bandwidth may be used by other competing tenants. For now,
we assume that co-located tenants do not fully congest the network
(Section 4.3 considers multi-tenancy with congestion), We repeat
our VM live migration experiments using with varying bandwidth
allocation of 1, 2, 4, and 8 GB/s for the VM migration process.

Figure 7 shows the migration latency for MPTCP and TCP for a
32 GB VM. Since the amount of memory state transferred is tens of
Gigabytes, MPTCP shows the expected 2x reduction in latency with

M
ig
ra
ti
o
n
	T
im

e
	(
se
c)

Figure 7: MPTCP yields lower migration times than TCP when
the bandwidth allocated to the tenant VM between 1 and 8
Gbps.

double bandwidth aggregation when it is allocated 1 Gb/s per NIC.
The migration process is able to perform per-page CPU operations
at line speeds, allowing MPTCP to fully exploit the bandwidth on
both interfaces. As the allocated NIC bandwidth is increased to
2 GB and beyond, MPTCP shows diminishing benefits over TCP
and the advantage of bandwidth aggregation disappears at 8 GB/s
and beyond. We attribute this to the relative speed of CPU versus
network—as the network becomes faster, the CPU is not able to keep
up and consequently MPTCP’s aggregation benefits are diminished.

We also repeated our experiments with YCSB and Redis in a
multi-tenant scenario with limited bandwidth allocations. In this
case, since the requested object sizes are small (1KB and 100 KB),
MPTCP is unable to exhibit any benefit from its second flow even
at 1 GB/s (as shown in Figure 4, transfer sizes need to be 1 MB or
greater to see any benefits).

4.3 Performance in Congested Networks
Our next set of experiments quantify the benefits of MPTCP in
congested settings. Our premise is that MPTCP should be more
robust to network congestion on some paths since it can utilize the
bandwidth available on other paths [34] in contrast to TCP. We run
experiments to quantify these benefits.
VM migration. We run the congestion generator described in Sec-
tion 3.3 to introduce congestion on all interfaces and repeat our live
migration experiments. We measure migration latencies for 16, 32,
and 64 GB VMs.

Figure 8 shows a box-plot of the observed latencies with the
mean, and the 95th percentile (the whisker) values marked. Our
results show that MPTCP provides significant latency reduction over
TCP in all cases, with reduction of 30% to 50% compared to TCP
across the runs. The benefits vary due to the variable nature of the
generated congestion. These benefits are due to MPTCP’s ability to
send more data on the less congested path(s) when some path(s) are

M
ig
ra
tio

n	
Ti
m
e	
(s
ec
)

Figure 8: Under congestion, MPTCP provides better VM mi-
gration time by up to 33% compared to TCP.

congested as well as the bandwidth aggregation (with higher overall
available bandwidth).

Next, we repeat the Redis and YCSB experiments under conges-
tion. As shown in Table 2, for 1 KB object sizes, MPTCP offers
no benefit over TCP, since at least 500KB flows are needed for
MPTCP to activate the second flow. Both TCP and MPTCP latency
and throughput worsen significantly due to congestion.

However, for 100KB objects, MPTCP offers significant benefits—
it is able to provide similar (~3.6 seconds) latency when compared
to no congestion. TCP requests, on the other hand, begin to time-out,
resulting in YCSB request failures and infinite latencies. Thus, in the
presence of congestion, MPTCP performance is more robust than
TCP.

4.4 Robustness in the presence of link failures
In data centers, link failures can occur due to a variety of reasons, in-
cluding, hardware, and software failures [17]. Since MPTCP utilizes
multiple NICs and multiple paths, failure along one of the subflow
paths can still enable MPTCP to communicate using the other path,
yielding greater robustness. In this experiment, we test MPTCP’s
ability to provide fault-tolerance in the face of link failures with the
VM migration workload 3. We repeat our live-migration experiments
described previously with both TCP and MPTCP, migrating a VM
with 16 GB memory, running Kernel compile. After the migration
operation starts, we induce a failure on one of the two links.

Table 3 shows the migration latency seen under MPTCP. TCP
yields a migration latency of "infinity" on account of TCP connec-
tion/timeout failures that are seen after the link failure. MPTCP, on
the other hand, is able to successfully complete the migration every
time despite the failure, albeit with a degradation in migration com-
pletion time when compared to the no failure case. This experiments
reveals a key benefit, namely MPTCP provides robustness to link
failures and enables applications to continue execution, while TCP
sees connection failures (unless it is manually switched to the other
redundant path).

3We run similar experiments with other workloads but do not include them due to space
limitations.

Table 3: VM Migration times for 16GB VMs in the presence of
network failures. MPTCP is more robust to network failures

No Failure Failure
TCP 98 Sec ∞

MPTCP 94 Sec 110 sec

5 PERFORMANCE OF DISK-INTENSIVE
WORKLOADS

While the previous section considered data center workloads that
are memory-intensive with no disk I/O, disk intensive applications
are an important class of data center workloads. Bulk data transfer
applications such as disk backups, database-driven web applica-
tions, and distributed data processing platforms such as Spark and
Hadoop, are all examples of workloads that perform significant
disk I/O operations while also relying on network I/O. Our next
class of applications, discussed in this section, involve disk-intensive
workloads.

Bulk-data transfer Microbenchmarks. To establish a baseline
for MPTCP performance for disk-intensive applications, we consider
a microbenchmark where two simple tools, namely, FTP and rsync
are used to perform bulk copy of large VM disk images from one
server to another. In our experiments, We assume that this data is
being transferred from one SSD to another. Note that, in uncongested
settings, a 10GigE network is no longer the limiting resource—the
SSD has a maximum read speed of only 550 MB/s, well below the
bandwidth of a 10 GigE link.
Spark Distributed Data Processing. Distributed data-intensive
workloads such as Spark are popular data center and cloud workloads.
These workloads often require nodes to load data from disk, run
computations, and then perform a shuffle operation to aggregate
results, which mostly takes place in memory. For applications such as
these, MPTCP’s bandwidth aggregation and congestion control can
be useful features as applications like Spark rely on fast networks to
transfer data between the distributed nodes.To evaluate the effect of
bandwidth aggregation, we use Spark 1.6.2, and run the TeraSort [24]
benchmark with an input file size of 100 GB. Input files to Spark are
stored on magnetic disks on HDFS with a replication factor of 3.

Similar to our experiments for memory-intensive workloads, we
evaluate MPTCP’s performance compared to TCP in (i) uncongested
networks, (ii) multitenant settings, and finally (iii) congested net-
works.

5.1 Performance in Uncongested Networks
Our first experiment evaluates performance in uncongested networks
with no interference from other applications.
Disk Bulk Transfer Microbenchmarks We use rsync and FTP to
transfer a VM disk image file from an SSD disk on one server to
another. In our experiments, we vary the disk image size from 1
GB to 150 GB and measure the total transfer time under MPTCP
and TCP. Since TCP and MPTCP performance can be sensitive to
send and receive socket buffer sizes, we repeat each experiment for
a range of buffer sizes [8, 14].

Figure 9(a) shows the mean file transfer times for rsync, while
Figure 9(b) depicts the mean transfer time seen by FTP versus rsync

for a 150GB file copy. Since SSD read speeds are far lower than the
full 10GigE network bandwidth (our SSD has a maximum sequential
read speed of 550 Mb/s), bulk data transfers are disk-bound and
unable to exploit the available network bandwidth of a single NIC,
let alone the aggregated bandwidth of the dual NICs. Thus, TCP and
MPTCP transfer times are nearly identical for a range of file sizes.
We also note that, while a larger buffer improves performance of
high speed links, it provides these benefits for both TCP and MPTCP
without any notable differences between the two.

When using ssh transport, rsync performs data encryption, which
adds to its overhead, while FTP performs unencrypted bulk data
transfers. Consequently, Figure 9(b) demonstrates slightly lower
completion times for FTP over rsync due to the elimination of en-
cryption overheads. However, the disk bound nature of the transfers
still dominates, causing TCP and MPTCP performance to be near
identical.
Spark TeraSort workload. We use Spark TeraSort to sort a 100
GB data set under MPTCP and TCP in uncongested network. Fig-
ure 10 shows a box plot of completion times across 15 run for both
TCP and MPTCP. Note that our Spark experiments uses traditional
magnetic drives (HDDs), which are slower than SDDs, making the
workload even more disk bound than the SDD case. As a result,
neither TCP not MPTCP can utilize the full bandwidth of 10 GigE
in uncongested settings. The disk bound nature of TeraSort results
in similar completion times under MPTCP and TCP (around 12 min-
utes for a 100 Gb sort) with MPTCP unable to exploit any benefits
of bandwidth aggregation. Our analysis of the Spark job shows that
the vast majority of time (around 11 minutes out of 12) is spent on
disk reads, while the actual sort takes between 10 and 30 seconds
only. The network shuffle phase is thus a small fraction of the total
completion time, and a faster network can only improve this part of
the job, yielding insignificant improvements to the total completions
time.

5.2 Multi-tenancy performance
We repeat our previous experiments in a multi-tenant setting by
assuming that each tenant is dedicated 1 Gb/s bandwidth per NIC.

Figure 11 shows the file transfer times to transfer a 30 GB file
using both MPTCP and TCP. Note that on a 1 Gb/s network link, the
network, rather than the disk, is the bottleneck since the maximum
SSD read rate of 540 MB/s (≈ 4 Gb/s) is around 4x the maximum
network rate. Consequently, MPTCP’s bandwidth aggregation across
two 1 Gb/s paths yields double the network throughput compared
to TCP as shown in Figure 11. However, the Figure shows that this
advantage disappears when the network speed is increased to 10
Gb/s since the network becomes faster than the disk and the disk
speed becomes the bottleneck.

We also repeat the Spark TeraSort workloads under 1 Gb/s net-
work bandwidth limits. In this case however, there was no noticeable
difference between MPTCP and TCP. This is because the disk I/O
dominates the completion times and the short network shuffle does
not provide any noticeable improvements for MPTCP under 1 Gb/s
speeds. Since TeraSort does not stress the network, we omit the
graphs for space consideration.

Our results show that, in multi-tenant settings, MPTCP can im-
prove performance of large SSD streaming reads and replicating

Tr
an
sf
er
	ti
m
e	
(s
ec
)

(a) Using rsync with SSD disks, I/O bandwidth is the bottleneck and MPTCP provides no
performance improvement.

Tr
an

sf
er
	ti
m
e	
(s
ec
)

(b) While FTP provides better performance compared to rsync, MPTCP results in no im-
provement over TCP.

Figure 9: Disk-bound bulk transfer workloads do not see MPTCP improvements in uncongested settings.

Co
m
pl
et
io
n	
tim

e	
(m

in
)

Figure 10: MPTCP can improve Spark TeraSort performance
by 20% under network congestion. No benefits are seen in un-
congested settings.

/1	Gb/s /10	Gb/s

Tr
an
sf
er
	T
im

e	
(s
ec
)

Figure 11: MPTCP shows better performance compared to
TCP when the network bandwidth allocated a tenant is a frac-
tion of the 10GigE NIC bandwidth.

large objects when the network bandwidth allocation is low. How-
ever, these benefits disappear under slower HDDs or under higher
network bandwidth allocation.

Tr
an
sf
er
	T
im
e	
(s
ec
)

Figure 12: MPTCP speeds-up file transfers during congestion
by up to 30% compared to TCP.

5.3 Performance Under Network Congestion
Rsync. Our final experiments introduces congestion using our con-
gestion generator and measures the performance of bulk disk trans-
fers and Spark TeraSort under MPTCP and TCP in the presence of
congestion.

Figure 12 shows the file transfer times using rsync for files ranging
from 1 GB to 100 GB, under MPTCP and TCP using different socket
buffer sizes. In the presence of congestion, MPTCP improves file
transfer times by up to 30% over TCP by exploiting both bandwidth
aggregation and use of less congested paths. We also observe that
larger socket buffers offer a small marginal benefit for MPTCP.
Spark. To test the performance of Spark under congestion, we run
our congestion generator described earlier on all machines in the
cluster, see Figure 2, with machines on the left side of the network
acting as sources of congestion while machines on the right-side
of the network acting as receivers. This generated traffic can be
viewed as background network traffic on the whole network. We
note that the congestion generator is very light-weight and does not
consume any significant CPU or memory resources on the source or
destination.

The two right most box plots in Figure 10 show the performance
of MPTCP vs TCP under high congestion. MPTCP is on average
20% faster than TCP. When looking at the per phase speed, the sort
phase in some runs grew to over four minutes under TCP, while it
grew to around two minutes for MPTCP. The distribution in running
times is also much less dispersed with MPTCP compared to TCP.
This is expected as MPTCP’s multiple links allows more data to be
transferred under extreme congestion.

6 PERFORMANCE IN PUBLIC CLOUDS
Our previous experiments assumed a private cloud that enabled
controlled network experiments. Our final experiment examines
how our observations of MPTCP performance comes over to public
clouds.

Major cloud providers, such as Amazon EC2, Microsoft Azure,
and IBM Softlayer, all employ a virtualized data center architecture
and offer VMs to end-customers. These VMs can be configured with
multiple logical NICs—for example, a private IP NIC and a public
IP NIC, or in other cases, multiple NICs of each type.

Although the internal data center details of public clouds are not
public knowledge, it is reasonable to assume they employ modern
10 GigE or even 40 GigE LANs, and redundant LAN topologies.
Thus, in principle, utilizing the multiple logical NICs of a VM via
MPTCP should offer similar benefits (and similar drawbacks) as that
seen in our previous experiments.

As discussed earlier, we conduct our evaluation on Azure public
cloud instances in the US East region. In particular, we use Standard
D4 V2 and Standard D13 V2 VM types. We configure each VM
with two network interfaces, with each interface assigned an IP on a
different subnet. We examine the effectiveness of MPTCP’s band-
width aggregation using iperf to measure the bandwidth between
two VMs, each with two network interfaces.

We ran the iperf memory-to-memory transfer benchmark on the
two Azure VMs. Figure 13 shows the bandwidth observed on the
two virtual interfaces at the receiver VM over time for both MPTCP
and TCP. Our experiment yields an unexpected result. First, we
observe that TCP is able to outperform MPTCP by a significant
margin. Second, we observe that, under MPTCP, the bandwidth of
the two subflows fluctuate significantly over time, but the sum of the
two bandwidth, i.e, aggregate MPTCP bandwidth, shows much less
variance. In particular, when the bandwidth utilized by one subflow
falls, there is a simultaneous corresponding increase on the other
interface, keeping the total bandwidth relatively stable.

Since the internal cloud configuration is not public information,
we can only infer the cause of this surprising behaviour. It is clear
that the total bandwidth usage of the VM across all NICs is being
throttled. This is why the sum of the bandwidth across flows is
relatively stable. It is possible that the two logical NICs maybe
mapped internally to the same physical NIC—in that case, the two
MPTCP flows are competing with one another and a rise in one
flow’s bandwidth results in a drop in the other.

Even if the VMs logical NICs were to be mapped to different
physical NICs, the aggregate bandwidth usage appears to be capped,
which inherently prevents MPTCP from exploiting the presence of

Time	(sec)

Figure 13: Time-varying bandwidths seen in the Azure public
cloud. Interface bandwidths vary significantly, and TCP vastly
outperforms MPTCP.

multiple NICs and multiple paths. Under these conditions, bandwidth
aggregation as a negative impact on application performance. 4

Thus, under current configurations, our private cloud results do
not carry over to the public cloud (at least for the Azure cloud). How-
ever, if public cloud providers were to remove bandwidth throttling,
or increase the total allocation significantly, we expect cloud VMs to
behave like our private cloud VMs. In that case, similar insights to
our private cloud results will apply with regard to MPTCP’s benefits
and drawbacks.

7 LESSONS LEARNED AND DISCUSSION
In this section, we summarize our findings and discuss their implica-
tions for today’s clouds and data centers.
Uncongested Networks: In an uncongested network, we find that,
for 10 GigE links and beyond, the network is typically not the bot-
tleneck for today’s applications. Other resource bottlenecks prevent
today’s unoptimized applications from exploiting multiple paths and
bandwidth aggregation benefits of MPTCP.

For memory intensive workloads, we find that the “ideal” iperf
benchmark can exploit the bandwidth aggregation benefits of MPTCP
since it is fully network bound. Live VM migration, which is the
closest memory-to-memory transfer workload, however is unable to
transmit pages at line speed to extract these benefits. Redis in mem-
ory databases typically do not have flow sizes that are large enough
for MPTCP to provide any benefits. For disk-intensive workloads,
the slower speeds of modern SSDs and HDDs relative to network
speeds leave disk-intensive workloads unable to exploit MPTCP
benefits.
Multi-tenant workloads. In multi-tenant scenarios where the net-
work bandwidth allocated to a tenant is smaller than full link benefits,
MPTCP shows some benefits in selected scenarios. For memory in-
tensive workloads, live migrations see MPTCP’s bandwidth aggrega-
tion benefits with a lower bandwidth allocation while small requests
in Redis do not see any benefits. For disk intensive workloads run-
ning on SSD, MPTCP yields benefits whenever the allocated network
bandwidth is lower than the disk speeds. However, HDDs continue

4We note that Amazon’s AWS also does not allow bandwidth aggregation when using
multiple NICs: https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-eni.html

to be a bottleneck even with a 1GB/s network allocation speed and
do not see any benefits from MPTCP.
Congested Network and Failures. MPTCP’s advantages over TCP
increase in the presence of network congestion since MPTCP can
exploit redundant paths. Both memory intensive and disk intensive
workloads see benefits of 20 to 50% compared to TCP. Even “small
flows” such as Redis requests see benefits at high levels of conges-
tion.

Finally, MPTCP’s robustness to network failures is a major ad-
vantage. While networked applications fail with TCP, they execute
successfully, albeit with a performance degradation, when using
MPTCP.
Implications. Due to these mixed results, whether and when to use
MPTCP in data centers and clouds depends on the scenario. In purely
uncongested, single tenant situations, our results do not show any
benefits of deploying MPTCP. For multi-tenant scenarios, our results
argue for selective deployment of MPTCP for certain applications.
Specifically, MPTCP should be deployed for bulk data transfers, e.g.,
VM migrations or fast SSD bulk transfers, and not be deployed for
request-response server applications where small requests dominate.
If the data center network is characterized by frequent congestion in
the network or experiences frequent link failures, our results argue
for a “blanket” deployment of MPTCP for all applications to exploit
its robustness properties.

In the case of public clouds, unless the cloud provider allows
customers to fully exploit the bandwidth available over multiple
NICs (by removing bandwidth limits), customers will not see the
above benefits.
Beyond 10 GigE networks. Our current experiments utilize a 10
GigE network. Today, 40 GigE networks are already seeing early
deployments, thus it is instructive to understand how our insights
carry over to 40 GigE networks and beyond. Broadly speaking, our
findings are generally applicable to 40 GigE networks and beyond,
but with some caveats. First, our congestion and failure results do
not depend on network speeds and emphasize robustness—they will
apply to faster networks as well when they experience congestion or
failures. Our multi-tenant results depend largely on the bandwidth
allocated to a tenant rather than the full link speed, thus, a tenant
that is rate limited to 1 Gb/s should see similar behaviour on faster
networks. Similarly, when the behaviour depends on disk speeds
versus network speed, the tenant’s allocation largely determines the
behaviour. If tenants are allocated more bandwidth on 40 Gig LANs,
the benefits will diminish. In uncongested single tenant setting, the
network speed does matter, but we find MPTCP to be ineffective
since 10 Gig networks are not the bottleneck, and faster networks
will be even less so.

8 RELATED WORK
The earliest work discussing multi-path networking dates back to
1975 when the concept of “dispersity routing” was discussed. Since
then, multiple solutions have been proposed with many surveys dis-
cussing multi-pathing techniques and benefits [21, 29, 33]. Resource
pooling for network resources [43], motivates the need for multi-path
at the transport layer and lays the groundwork for MPTCP.

The seminal work on MPTCP in data centers by Raiciu et al. [34],
shows the shortcomings of ECMP and proposes MPTCP to improve

data center performance and robustness using state-of-the-art data
center network topologies. The evaluation in that work is network-
centric rather than application-centric, with a bias towards network
simulations. Work on MPTCP [26, 35–37] focused on establish-
ing its feasibility and fairness properties. In this paper, we assume
that the fairness properties hold and have performed an application-
centric empirical study in different network environments.

MPTCP has high appeal in mobile environments, where WiFi
and cellular networks can be combined to provide high throughput,
improved connectivity, and lower costs [7, 11]. Some of this work
raise concerns over MPTCP’s short flow performance and how the
primary subflow can impact overall connection-level performance[7,
11]. Path prioritization for MPTCP is explored in [20] for video
streaming applications to reduce energy and cellular network usage.

Path selection is crucial in multi-path networking [25]. Path-
capture [45] is a well-known exploration-exploitation trade-off. Path
characteristics can only be obtained by sending data, but this “ex-
ploration” can degrade performance if the secondary paths have
very poor performance, especially with coupled congestion control.
Initial path selection and the RTT difference between paths can have
drastic and unexpected effects [4]. In data centers, this problem
is not very prominent with uniform links. To address these issues,
an alternative to MPTCP’s packet striping using fountain-codes is
proposed in [10].

Mitigating congestion and improving load balancing in data cen-
ters is an active research area. Most approaches involve the use
of network switches to perform “intelligent” load balancing. For
example, decentralized approaches to traffic management rely on
implementing congestion-detection and flow-management policies
in either custom or off-the-shelf network switches [2, 19]. MPTCP
on the other hand requires no extra support from the network, and
works independently of other network management components.
Distributed approaches such as Conga [2] and others [23, 42, 47]
use high-speed programmable switches to implement congestion-
mitigating policies in switches. A good comparison of load balancing
approaches including ECMP and MPTCP can be found in [23]. Fi-
nally, characterization of network traffic in production data centers
can be found in [6, 18, 40].

9 CONCLUSION
In this paper, we empirically study MPTCP’s performance with
multiple data center workloads and network conditions. Our results
show that for 10 Gbps networks, many data center applications are
constrained by resources other than network bandwidth, limiting the
efficacy of MPTCP. In several cases, this can result in worsening
performance compared to the performance with TCP. We demon-
strate that MPTCP may result in better performance when flow sizes
are sufficiently large to compensate for the overheads of MPTCP
and to saturate the capacity of more than one interface. Therefore,
performance can improve when using MPTCP on networks with
limited bandwidth, e.g., VMs with rate limited network allocations.
However, due to the current public cloud network architectures, ben-
efits are not seen in practice. We conclude that while performance
improvements from bandwidth aggregation are unlikely, MPTCP
may still provide desired congestion and resiliency performance for
some application in data centers.

Acknowledgment This research was supported in part by NSF
grants CNS-1413998, 1763834, 1802523, 1836752, and 1405826, a
gift from Huawei, and a grant from Microsoft Azure.

REFERENCES
[1] M. Al-Fares, A. Loukissas, and A. Vahdat. A scalable, commodity data center

network architecture. In ACM SIGCOMM Computer Communication Review,
volume 38, pages 63–74. ACM, 2008.

[2] M. Alizadeh, T. Edsall, S. Dharmapurikar, R. Vaidyanathan, et al. Conga: Dis-
tributed congestion-aware load balancing for datacenters. In ACM SIGCOMM
Computer Communication Review, volume 44, pages 503–514, 2014.

[3] M. Alizadeh, A. Greenberg, D. A. Maltz, J. Padhye, P. Patel, B. Prabhakar, S. Sen-
gupta, and M. Sridharan. Data center tcp (dctcp). In ACM SIGCOMM computer
communication review, volume 40, pages 63–74. ACM, 2010.

[4] B. Arzani, A. Gurney, S. Cheng, R. Guerin, and B. T. Loo. Deconstructing
mptcp performance. In Network Protocols (ICNP), 2014 IEEE 22nd International
Conference on, pages 269–274. IEEE, 2014.

[5] S. Barré, C. Paasch, and O. Bonaventure. Multipath tcp: from theory to practice.
NETWORKING 2011, pages 444–457, 2011.

[6] T. Benson, A. Akella, and D. A. Maltz. Network traffic characteristics of data
centers in the wild. In Proceedings of the 10th ACM SIGCOMM conference on
Internet measurement, pages 267–280. ACM, 2010.

[7] Y.-C. Chen, Y.-s. Lim, R. J. Gibbens, E. M. Nahum, R. Khalili, and D. Towsley. A
measurement-based study of multipath tcp performance over wireless networks.
In ACM IMC, pages 455–468, 2013.

[8] Y.-C. Chen and D. Towsley. On bufferbloat and delay analysis of multipath tcp in
wireless networks. In Networking Conference, 2014 IFIP, pages 1–9. IEEE, 2014.

[9] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears. Benchmark-
ing cloud serving systems with ycsb. In Proceedings of the 1st ACM symposium
on Cloud computing, pages 143–154. ACM, 2010.

[10] Y. Cui, L. Wang, X. Wang, H. Wang, and Y. Wang. Fmtcp: A fountain code-based
multipath transmission control protocol. IEEE/ACM Transactions on Networking
(TON), 23(2):465–478, 2015.

[11] S. Deng, R. Netravali, A. Sivaraman, and H. Balakrishnan. Wifi, lte, or both?:
Measuring multi-homed wireless internet performance. In ACM IMC, pages
181–194, 2014.

[12] Z. Ding, R. R. Hoare, A. K. Jones, and R. Melhem. Level-wise scheduling
algorithm for fat tree interconnection networks. In Proceedings of the 2006
ACM/IEEE conference on Supercomputing, page 96. ACM, 2006.

[13] S. Ferlin, Ö. Alay, T. Dreibholz, D. A. Hayes, and M. Welzl. Revisiting congestion
control for multipath tcp with shared bottleneck detection. In IEEE INFOCOM,
pages 1–9, 2016.

[14] S. Ferlin-Oliveira, T. Dreibholz, and Ö. Alay. Tackling the challenge of bufferbloat
in multi-path transport over heterogeneous wireless networks. In IEEE IWQoS,,
pages 123–128, 2014.

[15] A. Ford, C. Raiciu, M. Handley, S. Barre, and J. Iyengar. Architectural guidelines
for multipath TCP development. RFC 6182, Mar. 2011.

[16] A. Ford, C. Raiciu, M. Handley, and O. Bonaventure. TCP extensions for multipath
operation with multiple addresses. RFC 6824, 2013.

[17] P. Gill, N. Jain, and N. Nagappan. Understanding network failures in data cen-
ters: measurement, analysis, and implications. In ACM SIGCOMM Computer
Communication Review, volume 41, pages 350–361. ACM, 2011.

[18] A. Greenberg, J. R. Hamilton, N. Jain, S. Kandula, C. Kim, P. Lahiri, D. A. Maltz,
P. Patel, and S. Sengupta. Vl2: a scalable and flexible data center network. In ACM
SIGCOMM computer communication review, volume 39, pages 51–62. ACM,
2009.

[19] M. P. Grosvenor, M. Schwarzkopf, I. Gog, R. N. Watson, A. W. Moore, S. Hand,
and J. Crowcroft. Queues don’t matter when you can jump them! In NSDI, pages
1–14, 2015.

[20] B. Han, F. Qian, L. Ji, V. Gopalakrishnan, and N. Bedminster. Mp-dash: Adaptive
video streaming over preference-aware multipath. In ACM CoNEXT, pages 129–
143, 2016.

[21] H. Han, S. Shakkottai, C. V. Hollot, R. Srikant, and D. Towsley. Multi-path TCP:
A joint congestion control and routing scheme to exploit path diversity in the
Internet. IEEE/ACM Transactions on Networking, 14:1260–1271, 2006.

[22] S. Hassayoun, J. Iyengar, and D. Ros. Dynamic window coupling for multipath
congestion control. In IEEE ICNP, pages 341–352, 2011.

[23] K. He, E. Rozner, K. Agarwal, W. Felter, J. Carter, and A. Akella. Presto: Edge-
based load balancing for fast datacenter networks. ACM SIGCOMM Computer
Communication Review, 45(4):465–478, 2015.

[24] E. Higgs. Spark Terasort. https://github.com/ehiggs/spark-terasort.
[25] P. Key, L. Massoulié, and D. Towsley. Path selection and multipath congestion

control. In INFOCOM 2007. 26th IEEE International Conference on Computer
Communications. IEEE, pages 143–151. IEEE, 2007.

[26] R. Khalili, N. Gast, M. Popovic, U. Upadhyay, and J.-Y. Le Boudec. MPTCP is
not pareto-optimal: Performance issues and a possible solution. In Proceedings

of the 8th International Conference on Emerging Networking Experiments and
Technologies (CoNext), pages 1–12. ACM, 2012.

[27] D. Kreutz, F. M. Ramos, P. E. Verissimo, C. E. Rothenberg, S. Azodolmolky, and
S. Uhlig. Software-defined networking: A comprehensive survey. Proceedings of
the IEEE, 103(1):14–76, 2015.

[28] T. A. Le, C. S. Hong, M. A. Razzaque, S. Lee, and H. Jung. ecmtcp: an energy-
aware congestion control algorithm for multipath tcp. IEEE communications
letters, 16(2):275–277, 2012.

[29] M. Li, A. Lukyanenko, Z. Ou, A. Yla-Jaaski, S. Tarkoma, M. Coudron, and
S. Secci. Multipath transmission for the internet: A survey. IEEE Communications
Surveys Tutorials, vol. PP, (99):1–41, 2016.

[30] K. Ousterhout, R. Rasti, S. Ratnasamy, S. Shenker, B.-G. Chun, and V. ICSI.
Making sense of performance in data analytics frameworks. In NSDI, volume 15,
pages 293–307, 2015.

[31] C. Paasch and S. Barre. Multipath TCP in the Linux kernel. http://www.
multipath-tcp.org.

[32] C. Paasch, S. Ferlin, O. Alay, and O. Bonaventure. Experimental evaluation of
multipath tcp schedulers. In Proceedings of the 2014 ACM SIGCOMM workshop
on Capacity sharing workshop, pages 27–32. ACM, 2014.

[33] J. Qadir, A. Ali, K.-L. A. Yau, A. Sathiaseelan, and J. Crowcroft. Exploiting
the power of multiplicity: a holistic survey of network-layer multipath. IEEE
Communications Surveys & Tutorials, 17(4):2176–2213, 2015.

[34] C. Raiciu, S. Barre, C. Pluntke, A. Greenhalgh, D. Wischik, and M. Handley.
Improving datacenter performance and robustness with multipath tcp. In ACM
SIGCOMM Computer Communication Review, volume 41, pages 266–277. ACM,
2011.

[35] C. Raiciu, M. Handly, and D. Wischik. Coupled congestion control for multipath
transport protocols. RFC 6356, Oct 2011.

[36] C. Raiciu, D. Niculescu, M. Bagnulo, and M. J. Handley. Opportunistic mobility
with multipath TCP. pages 7–12, 2011.

[37] C. Raiciu, C. Paasch, S. Barre, A. Ford, M. Honda, F. Duchene, O. Bonaventure,
and M. Handley. How hard can it be? Designing and implementing a deployable
multipath TCP. 2012.

[38] C. Reiss, A. Tumanov, G. R. Ganger, R. H. Katz, and M. A. Kozuch. Heterogeneity
and dynamicity of clouds at scale: Google trace analysis. In Proceedings of the
Third ACM Symposium on Cloud Computing, SoCC ’12, pages 7:1–7:13, New
York, NY, USA, 2012. ACM.

[39] A. Roy, H. Zeng, J. Bagga, G. Porter, and A. C. Snoeren. Inside the social
network’s (datacenter) network. In ACM SIGCOMM Computer Communication
Review, volume 45, pages 123–137. ACM, 2015.

[40] A. Roy, H. Zeng, J. Bagga, G. Porter, and A. C. Snoeren. Inside the social
network’s (datacenter) network. In ACM SIGCOMM Computer Communication
Review, volume 45, pages 123–137. ACM, 2015.

[41] A. Trivedi, P. Stuedi, J. Pfefferle, R. Stoica, B. Metzler, I. Koltsidas, and N. Ioan-
nou. On the [ir]relevance of network performance for data processing. In 8th
USENIX Workshop on Hot Topics in Cloud Computing (HotCloud 16), Denver,
CO, 2016. USENIX Association.

[42] E. Vanini, R. Pan, M. Alizadeh, T. Edsall, and P. Taheri. Let it flow: Resilient
asymmetric load balancing with flowlet switching. In 14th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 17). USENIX Association.

[43] D. Wischik, M. Handley, and M. B. Braun. The resource pooling principle. ACM
SIGCOMM Computer Communication Review, 38(5):47–52, 2008.

[44] D. Wischik, C. Raiciu, A. Greenhalgh, and M. Handley. Design, implementation
and evaluation of congestion control for multipath tcp. In NSDI, 2011.

[45] D. Wischik, C. Raiciu, and M. Handley. Balancing resource pooling and equipoise
in multipath transport. ACM SIGCOMM, 2010.

[46] T. Wood, P. J. Shenoy, A. Venkataramani, and M. S. Yousif. Black-box and
gray-box strategies for virtual machine migration. In NSDI, 2007.

[47] K. Zarifis, R. Miao, M. Calder, E. Katz-Bassett, M. Yu, and J. Padhye. Dibs:
Just-in-time congestion mitigation for data centers. In Proceedings of the Ninth
European Conference on Computer Systems, page 6. ACM, 2014.

[48] J. Zhao, J. Liu, H. Wang, and C. Xu. Multipath tcp for datacenters: From en-
ergy efficiency perspective. In INFOCOM 2017-IEEE Conference on Computer
Communications, IEEE, pages 1–9. IEEE, 2017.

https://github.com/ehiggs/spark-terasort
http://www.multipath-tcp.org
http://www.multipath-tcp.org

	Abstract
	1 Introduction
	2 Background
	3 Experimental Methodology
	3.1 System setup
	3.2 Application Workloads
	3.3 Network Conditions

	4 Performance of Memory-intensive workloads
	4.1 Performance in Uncongested Networks
	4.2 Multi-tenancy Performance
	4.3 Performance in Congested Networks
	4.4 Robustness in the presence of link failures

	5 Performance of Disk-intensive workloads
	5.1 Performance in Uncongested Networks
	5.2 Multi-tenancy performance
	5.3 Performance Under Network Congestion

	6 Performance in Public Clouds
	7 Lessons learned and Discussion
	8 Related Work
	9 Conclusion
	References

